
The de Bruijn graph
and genome assembly

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead.

Different kind of graph

“tomorrow and tomorrow and tomorrow”

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

An edge represents an ordered pair of adjacent words in
the input

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

An edge represents an ordered pair of adjacent words in
the input

Multigraph: there can be more than one edge from
node A to node B

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

De Bruijn graph

AAABBBBAgenome:

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

genome:

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA

genome:

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA

genome:

AA

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA

genome:

AA

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB

genome:

AA

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB

genome:

AA

AB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB

genome:

AA

AB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB

genome:

AA

AB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB

genome:

AA

AB

BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB

genome:

AA

AB

BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB

genome:

AA

AB

BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB

genome:

AA

AB

BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB

genome:

AA

AB

BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB

genome:

AA

AB

BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA

AB

BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA

AB

BA
BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA

AB

BA
BB

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA

AB

BA
BB

One edge per k-mer

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA

AB

BA
BB

One edge per k-mer

One node per distinct k-1-mer

*

De Bruijn graph

AA

AB

BA
BB

*

De Bruijn graph

AA

AB

BA
BB

Walk crossing each edge exactly once gives a reconstruction
of the genome

*

De Bruijn graph

BA
1
AA

AB

BB

AAA

Walk crossing each edge exactly once gives a reconstruction
of the genome

*

De Bruijn graph

BA
1 2

AA

AB

BB

AAA B

Walk crossing each edge exactly once gives a reconstruction
of the genome

*

De Bruijn graph

BA
1 2

3AA

AB

BB

AAA BB

Walk crossing each edge exactly once gives a reconstruction
of the genome

*

De Bruijn graph

BA
1 2

3

4

AA

AB

BB

AAA BBB

Walk crossing each edge exactly once gives a reconstruction
of the genome

*

De Bruijn graph

BA
1 2

3

4
5

AA

AB

BB

AAA BBBB

Walk crossing each edge exactly once gives a reconstruction
of the genome

*

De Bruijn graph

BA
1 2

3

4
5

6

AA

AB

BB

AAA BBBBA

Walk crossing each edge exactly once gives a reconstruction
of the genome

*

De Bruijn graph

BA
1 2

3

4
5

6

AA

AB

BB

AAA BBBBA

Walk crossing each edge exactly once gives a reconstruction
of the genome . This is an Eulerian walk.

*

De Bruijn graph

Aside: how do you pronounce "De Bruijn"?

https://www.biostars.org/p/7186/

There is debate:

Nicolaas Govert
de Bruijn

1918 -- 2012

*

https://www.biostars.org/p/7186/

Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and multiset
of directed edges, E

Otherwise, like a directed graph

a b

c d

V = { a, b, c, d }
E = { (a, b), (a, b), (a, b), (a, c), (c, b) }

Repeated

Node’s indegree = # incoming edges

Node’s outdegree = # outgoing edges

De Bruijn graph is a directed multigraph

*

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

AA

AB

BA

BB

*

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

AA

AB

BA

BB

*

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

Graph is connected if each node can be reached by some other node

AA

AB

BA

BB

*

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

Graph is connected if each node can be reached by some other node

AA

AB

BA

BB

Eulerian walk visits each edge exactly once

*

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

Graph is connected if each node can be reached by some other node

AA

AB

BA

BB

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian. (For
simplicity, we won’t distinguish Eulerian from semi-Eulerian.)

*

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

A directed, connected graph is Eulerian if and
only if it has at most 2 semi-balanced nodes and
all other nodes are balanced

Graph is connected if each node can be reached by some other node

Jones and Pevzner section 8.8

AA

AB

BA

BB

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian. (For
simplicity, we won’t distinguish Eulerian from semi-Eulerian.)

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to de Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA

BB L R L R L R L R L R

Is it Eulerian?

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to de Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA

BB L R L R L R L R L R

Is it Eulerian? Yes

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to de Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA

BB L R L R L R L R L R

Is it Eulerian?

Argument 1: AA → AA → AB → BB → BB → BA

Yes

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to de Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA

BB L R L R L R L R L R

Is it Eulerian?

Argument 1: AA → AA → AB → BB → BB → BA

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

Yes

*

De Bruijn graph

A procedure for making a de Bruijn graph
for a genome

Start with an input string: a_long_long_long_time

Take each k mer and split
into left and right k-1 mers

Pick a substring length k: 5

long_

long ong_

Add k-1 mers as nodes to de Bruijn graph (if
not already there), add edge from left k-1
mer to right k-1 mer

Assume “perfect sequencing”: each genome k-mer is
sequenced exactly once with no errors

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

*

De Bruijn graph

a_lo

_lon

a_lo

_lon

long

a_lo

_lon

long

ong_ ong_

ng_l

a_lo

_lon

long

ng_l

g_lo

ong_

a_lo

_lon

long

ng_l

g_lo a_lo

_lon

long

ong_

ng_l

g_lo a_lo

_lon

long

ong_

ng_l

g_lo a_lo

_lon

long

ong_

First 8 k-mer additions, k = 5

a_long_long_long_time

*

De Bruijn graph
ng_l

g_lo a_lo

_lon

long

ong_

ng_t

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

ng_l

g_lo a_lo

_lon

long

ong_

Finished graph
a_long_long_long_time
Last 5 k-mer additions, k = 5

*

De Bruijn graph

Procedure yields Eulerian graph. Why?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

*

De Bruijn graph

Procedure yields Eulerian graph. Why?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

* Unless left- and right-most k-1-mers are equal

*

De Bruijn graph

Procedure yields Eulerian graph. Why?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced with
one more incoming than outgoing *

* Unless left- and right-most k-1-mers are equal

*

De Bruijn graph

Procedure yields Eulerian graph. Why?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced with
one more incoming than outgoing *

Other nodes are balanced since # times k-1-mer occurs as
a left k-1-mer = # times it occurs as a right k-1-mer

* Unless left- and right-most k-1-mers are equal

*

De Bruijn graph

What string does the Eulerian path spell out?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

*

De Bruijn graph

What string does the Eulerian path spell out?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

a_long_long_long_time

*

De Bruijn graph

What string does the Eulerian path spell out?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

a_long_long_long_time

The original string! No collapsing!

*

De Bruijn graph builder implementation

class DeBruijnGraph:
 """ A de Bruijn multigraph built from a collection of strings.
 User supplies strings and k-mer length k. Nodes of the de
 Bruijn graph are k-1-mers and edges join a left k-1-mer to a
 right k-1-mer. """

 @staticmethod
 def chop(st, k):
 """ Chop a string up into k mers of given length """
 for i in xrange(0, len(st)-(k-1)): yield st[i:i+k]

 class Node:
 """ Node in a de Bruijn graph, representing a k-1 mer """
 def __init__(self, km1mer):
 self.km1mer = km1mer

 def __hash__(self):
 return hash(self.km1mer)

 def __init__(self, strIter, k):
 """ Build de Bruijn multigraph given strings and k-mer length k """
 self.G = {} # multimap from nodes to neighbors
 self.nodes = {} # maps k-1-mers to Node objects
 self.k = k
 for st in strIter:
 for kmer in self.chop(st, k):
 km1L, km1R = kmer[:-1], kmer[1:]
 nodeL, nodeR = None, None
 if km1L in self.nodes:
 nodeL = self.nodes[km1L]
 else:
 nodeL = self.nodes[km1L] = self.Node(km1L)
 if km1R in self.nodes:
 nodeR = self.nodes[km1R]
 else:
 nodeR = self.nodes[km1R] = self.Node(km1R)
 self.G.setdefault(nodeL, []).append(nodeR)

Chop string into k-mers

For each k-mer, find left
and right k-1-mers

Create corresponding
nodes (if necessary) and
add edge

*

For Eulerian graph, Eulerian walk can be found in O(| E |) time. | E | is # edges.

Convert graph into one with
Eulerian cycle (add an edge to
make all nodes balanced),
then use this recursive
procedure

Make all nodes balanced, if not already

tour = []
Pick arbitrary node
src = g.iterkeys().next()

def __visit(n):
while len(g[n]) > 0:
dst = g[n].pop()
__visit(dst)

 tour.append(n)

__visit(src)
Reverse order, omit repeated node
tour = tour[::-1][:-1]

Turn tour into walk, if necessary

Insight: If C is a cycle in an
Eulerian graph, then after
removing edges of C,
remaining connected
components are also Eulerian

http://www.algorithmist.com/index.php/Eulerian_tour

De Bruijn graph

*

http://www.algorithmist.com/index.php/Eulerian_tour

De Bruijn graph

Full illustrative de Bruijn graph and Eulerian walk
implementation:

http://bit.ly/CG_DeBruijn

>>> G = DeBruijnGraph(["a_long_long_long_time"], 5)
>>> print G.eulerianWalkOrCycle()
['a_lo', '_lon', 'long', 'ong_', 'ng_l', 'g_lo',
'_lon', 'long', 'ong_', 'ng_l', 'g_lo', '_lon', 'long',
'ong_', 'ng_t', 'g_ti', '_tim', 'time']

Example where Eulerian walk gives correct answer for
small k whereas Greedy-SCS could spuriously collapse
repeat:

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

*

http://bit.ly/CG_DeBruijn

De Bruijn graph

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 4)
>>> path = G.eulerianWalkOrCycle() # Fast! Linear in # edges
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_thing_turn_turn_turn_there_is_a_season

to
_

o_
e

n_
t

_t
u

_t
h

g_
t

er
y

ry
_

_e
v

y_
t

se
a

ea
s

a_
s

_s
e

ng
_

re
_

e_
i

in
g

ve
r

he
r

er
e

s_
a

_a
_

_i
s

is_
tu
r

ur
n

th
i

th
e

as
o

so
n

ev
e

hi
n

rn
_

http://bit.ly/CG_DeBruijn

*

http://bit.ly/CG_DeBruijn

De Bruijn graph

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 4)
>>> path = G.eulerianWalkOrCycle() # Fast! Linear in # edges
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_thing_turn_turn_turn_there_is_a_season

to
_

o_
e

n_
t

_t
u

_t
h

g_
t

er
y

ry
_

_e
v

y_
t

se
a

ea
s

a_
s

_s
e

ng
_

re
_

e_
i

in
g

ve
r

he
r

er
e

s_
a

_a
_

_i
s

is_
tu
r

ur
n

th
i

th
e

as
o

so
n

ev
e

hi
n

rn
_

http://bit.ly/CG_DeBruijn

Recall: This is not generally possible or tractable in the overlap/SCS
formulation

*

http://bit.ly/CG_DeBruijn

Assuming perfect sequencing, procedure yields graph
with Eulerian walk that can be found efficiently.

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

We saw cases where Eulerian walk corresponds to
the original superstring. Is this always the case?

De Bruijn graph

*

De Bruijn graph
BE

EF

AB

BC BY

CD

FA ZA

DA

Problem 1: Repeats still cause misassembles

*

De Bruijn graph
BE

EF

AB

BC BY

CD

FA ZA

DA

ZA → AB → BE → EF → FA → AB → BC → CD → DA → AB → BY

ZA → AB → BC → CD → DA → AB → BE → EF → FA → AB → BY

Problem 1: Repeats still cause misassembles

*

De Bruijn graph
BE

EF

AB

BC BY

CD

FA ZA

DA

ZA → AB → BE → EF → FA → AB → BC → CD → DA → AB → BY

ZA → AB → BC → CD → DA → AB → BE → EF → FA → AB → BY

We’ve been building DBGs assuming “perfect”
sequencing: each k-mer reported exactly once, no
mistakes. Real datasets aren’t like that.

Problem 1: Repeats still cause misassembles

Problem 2:

*

The Problem with Eulerian Paths

(Kingsford, Schatz, Pop, 2010)

There are typically an
astronomical number
of possible Eulerian
tours with perfect data.

Adding back
constraints to limit # of
tours leads to a NP-
hard problem.

With imperfect data,
there are usually NO
Eulerian tours

Estimating # of parallel
edges is usually tricky.

Aside: counting # of Eulerian tours in a directed
graph is easy, but in an undirected graph is #P-
complete (hard).

* slide courtesy of Carl Kingsford

k = 50

Third law of assembly

Repeats make assembly difficult; whether we can assemble
without mistakes depends on length of reads and
repetitive patterns in genome

a_long_long_long_time

a_long_long_time

Collapsing:

Shuffling:

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA

AAABBBBA
3-mers:

L/R 2-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA

AB

BA
BB

One edge per k-mer

One node per distinct k-1-mer

*

De Bruijn graph

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 4)
>>> path = G.eulerianWalkOrCycle() # Fast! Linear in # edges
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_thing_turn_turn_turn_there_is_a_season

to
_

o_
e

n_
t

_t
u

_t
h

g_
t

er
y

ry
_

_e
v

y_
t

se
a

ea
s

a_
s

_s
e

ng
_

re
_

e_
i

in
g

ve
r

he
r

er
e

s_
a

_a
_

_i
s

is_
tu
r

ur
n

th
i

th
e

as
o

so
n

ev
e

hi
n

rn
_

http://bit.ly/CG_DeBruijn

*

http://bit.ly/CG_DeBruijn

Case where k = 4 works:

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 4)
>>> path = G.eulerianWalkOrCycle()
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_thing_turn_turn_turn_there_is_a_season

De Bruijn graph

*

Case where k = 4 works:

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 4)
>>> path = G.eulerianWalkOrCycle()
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_thing_turn_turn_turn_there_is_a_season

But k = 3 does not:

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 3)
>>> path = G.eulerianWalkOrCycle()
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_turn_turn_thing_turn_there_is_a_season

De Bruijn graph

*

Case where k = 4 works:

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 4)
>>> path = G.eulerianWalkOrCycle()
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_thing_turn_turn_turn_there_is_a_season

But k = 3 does not:

>>> st = "to_every_thing_turn_turn_turn_there_is_a_season"
>>> G = DeBruijnGraph([st], 3)
>>> path = G.eulerianWalkOrCycle()
>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every_turn_turn_thing_turn_there_is_a_season

Due to repeats that are unresolvable at k = 3

De Bruijn graph

*

De Bruijn graph
BE

EF

AB

BC BY

CD

FA ZA

DA

Problem 1: Repeats still cause misassembles

*

De Bruijn graph
BE

EF

AB

BC BY

CD

FA ZA

DA

ZA → AB → BE → EF → FA → AB → BC → CD → DA → AB → BY

ZA → AB → BC → CD → DA → AB → BE → EF → FA → AB → BY

Problem 1: Repeats still cause misassembles

*

De Bruijn graph
BE

EF

AB

BC BY

CD

FA ZA

DA

ZA → AB → BE → EF → FA → AB → BC → CD → DA → AB → BY

ZA → AB → BC → CD → DA → AB → BE → EF → FA → AB → BY

We’ve been building DBGs assuming “perfect”
sequencing: each k-mer reported exactly once, no
mistakes. Real datasets aren’t like that.

Problem 1: Repeats still cause misassembles

Problem 2:

*

Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

= un-balanced vertex

Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

= un-balanced vertex

*

Bursting bubbles

Compeau, Phillip EC, Pavel A. Pevzner, and Glenn Tesler. "How to apply de Bruijn graphs to genome assembly." Nature biotechnology 29.11 (2011): 987-991.

De Bruijn graph

Gaps in coverage (missing k-mers) lead
to disconnected or non-Eulerian graph

Graph for a_long_long_long_time, k = 5:

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

*

De Bruijn graph

Graph for a_long_long_long_time, k = 5 but omitting ong_t :

ng_l

g_lo a_lo

_lon

long

ong_

g_ti

_tim

ng_t

time

Gaps in coverage (missing k-mers) lead
to disconnected or non-Eulerian graph

*

De Bruijn graph

Coverage differences make graph non-Eulerian

Graph for a_long_long_long_time, k
= 5, with extra copy of ong_t :

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

*

De Bruijn graph

Coverage differences make graph non-Eulerian

Graph for a_long_long_long_time, k
= 5, with extra copy of ong_t :

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

4 semi-balanced nodes

*

De Bruijn graph

Errors and differences between chromosomes
also lead to non-Eulerian graphs

Graph for a_long_long_long_time, k = 5 but with
error that turns one copy of long_ into lxng_

ng_l

g_lo a_lo

_lon

lxng

xng_

long

ong_

ng_t

g_ti

_tim

time

*

Casting assembly as Eulerian walk is appealing, but not practical

De Bruijn graph

*

Casting assembly as Eulerian walk is appealing, but not practical

Uneven coverage, sequencing errors, etc make graph non-Eulerian

De Bruijn graph

*

Casting assembly as Eulerian walk is appealing, but not practical

Even if graph were Eulerian, repeats yield many possible walks

Uneven coverage, sequencing errors, etc make graph non-Eulerian

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn graph

*

Casting assembly as Eulerian walk is appealing, but not practical

Even if graph were Eulerian, repeats yield many possible walks

Uneven coverage, sequencing errors, etc make graph non-Eulerian

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn
graph, where walk contains each read as a subwalk

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn graph

*

Casting assembly as Eulerian walk is appealing, but not practical

Even if graph were Eulerian, repeats yield many possible walks

Uneven coverage, sequencing errors, etc make graph non-Eulerian

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn
graph, where walk contains each read as a subwalk

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

De Bruijn graph

*

But !rst we note that using the De Bruijn graph representation has
other advantages...

In practice, De Bruijn graph-based tools give up on unresolvable
repeats and yield fragmented assemblies, just like OLC tools.

De Bruijn graph

*

To build a De Bruijn graph in practice:

Pick k. Assume k ≤ shortest read length (k = 30 to 50 is common).

For each read:

For each k-mer:

Add k-mer’s left and right k-1-mers to graph if not there
already. Draw an edge from left to right k-1-mer.

d = 6 x 109 reads
n = 100 nt
m = 3 x 109 nt

{

≈ 1 sequencing run

≈ human

Say a sequencer produces
d reads of length n from a
genome of length m

De Bruijn graph

*

a_long_long_long_time

a_long_long_long,+ng_long_l,+g_long_time

Genome:

Reads:
k-mers:

Pick k = 8

a_long_l+
+_long_lo++
++long_lon+
+++ong_long+
++++ng_long_
+++++g_long_l
++++++_long_lo
+++++++long_lon
++++++++ong_long

g_long_t
+_long_ti
++long_tim
+++ong_time

ng_long_
+g_long_l

g_long_

_long_l _long_t

long_ti

ong_tim

long_lo

ong_lon

ng_long ng_time

a_long_

Given n (# reads), N (total length of all reads) and k,
and assuming k < length of shortest read:

Exact number of k-mers: N - n (k -1) O(N)

This is also the number of edges, | E |

Number of nodes | V | is at most 2 ∙ | E |, but
typically much smaller due to repeated k-1-mers

De Bruijn graph

*

g_long_

_long_l _long_t

long_ti

ong_tim

long_lo

ong_lon

ng_long ng_time

a_long_

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is O(1) expected work

Assume hash map encodes nodes & edges

Assume k-1-mers !t in O(1) machine words,
and hashing O(1) machine words is O(1) work

Querying / adding a key is O(1) expected work

O(1) expected work for 1 k-mer, O(N) overall

De Bruijn graph

*

Timed De Bruijn graph construction applied to progressively longer
pre!xes of lambda phage genome, k = 14

0 10000 20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

0.
20

Length of genome

S
ec

on
ds

 re
qu

ire
d

to
 b

ui
ld

O(N) expectation
appears to work in
practice, at least for this
small example

De Bruijn graph

*

In typical assembly projects,
average coverage is ~ 30 - 50

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph

*

Recall average coverage: average # reads covering a genome position

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

++++++++++++++++++CTAGGCCCTCAATTTTT
++++++++++++++++CTCTAGGCCCTCAATTTTT
++++++++++++++GGCTCTAGGCCCTCATTTTTT
+++++++++++CTCGGCTCTAGCCCCTCATTTT
++++++++TATCTCGACTCTAGGCCCTCA
++++++++TATCTCGACTCTAGGCC
++++TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

177 nucleotides

35 nucleotides

Average coverage = 177 / 35 ≈ 7x

De Bruijn graph

*

In typical assembly projects, average coverage is ~ 30 - 50

Same edge might appear in
dozens of copies; let’s use
edge weights instead

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

ng_l

g_lo

20

a_lo

_lon

10

long

ong_

30

20

ng_t

10

g_ti

_tim

10

10

20

30

time

10

Weight = # times
k-mer occurs

Using weights, there’s
one weighted edge for
each distinct k-mer

Before: one
edge per k-mer

After: one weighted
edge per distinct k-mer

De Bruijn graph

*

Say (a) reads are error-free, (b) we have one weighted edge for
each distinct k-mer, and (c) length of genome is G

of nodes and edges both O(N); N is total length of all reads

So # of nodes and edges are also both O(G)

Can’t be more distinct k-mers than there are k-mers in the
genome; likewise for k-1-mers

Combine with the O(N) bound and the # of nodes and
edges are both O(min(N, G))

There’s one node for each distinct k-1-mer, one edge for
each distinct k-mer

De Bruijn graph

*

With high average coverage, O(G) size bound is advantageous

Size of De Bruijn graph grows
sublinearly when average

coverage is high

10 20 30 40 50

20
00
0

40
00
0

60
00
0

80
00
0

Average coverage

de
 B

ru
ijn

 g
ra

ph
 n

od
es

 +
 e

dg
es

 k = 30

Genome = lambda phage (~ 48.5 K nt)

Draw random k-mers until target
average coverage is reached (x axis)

Build De Bruijn graph and total the #
of nodes and edges (y axis)

De Bruijn graph

*

Error correction

When data is error-free, # nodes, edges in de Bruijn graph is O(min(G, N))

10 20 30 40 50

0e
+0
0
2e
+0
4
4e
+0
4
6e
+0
4
8e
+0
4
1e
+0
5

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es
What about data with
sequencing errors?G bound

 k = 30

*

Error correction
ng_l

g_lo

20

a_lo

_lon

10

long

ong_

30

20

ng_t

10

g_ti

_tim

10

10

20

30

time

10

Take an example we saw (left)
and mutate a k-mer character
to a random other character
with probability 1% (right)

ng_l

g_lo

20

a_lo

_lon

9

lolg

olg_

1

long

ong_

29

onga

ngal

1

atlo

tlon

1

19

ng_t

10

g_ti

_tim

10

_l_n

l_ng

1

1

10

_loo

loog

1

20

27

time

10

ng_l

g_lo

20

a_lo

_lon

9

lolg

olg_

1

long

ong_

29

onga

ngal

1

atlo

tlon

1

19

ng_t

10

g_ti

_tim

10

_l_n

l_ng

1

1

10

_loo

loog

1

20

27

time

10

6 errors result in 10 new nodes
and 6 new weighted edges, all
with weight 1

*

Error correction

Same experiment as before but
with 5% error added

10 20 30 40 50

0
50
00
0

15
00
00

25
00
00

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

0% error

5% error

G bound

Errors wipe out much of the
bene!t of the G bound

As more k-mers overlap errors, # nodes, edges approach N

 k = 30

Instead of O(min(G, N)), we have
something more like O(N)

Lambda phage genome

*

0% error

5% error

G bound

10 20 30 40 50

0
50
00
0

15
00
00

25
00
00

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

1% error

Error correction

 k = 30

Lambda phage genome

*

Error correction

If we can correct sequencing errors up-front, we can prevent De
Bruijn graph from growing much beyond the G bound

How do we correct errors?

Analogy: design a spell checker for a language you’ve never seen
before. How do you come up with suggestions?

*

Error correction

k-mer count histogram:

x axis is an integer k-mer count, y axis is # distinct k-mers with that count

Right: such a
histogram for 3-mers
of CATCATCATCATCAT:

CAT occurs 5 times

ATC and TCA occur 4 times

*

Error correction

Say we have error-free sequencing reads drawn from a genome.
The amount of sequencing is such that average coverage = 200.
Let k = 20

~ 6,100 distinct k-mers
occurred exactly 10
times in the input

How would the picture
change for data with
1% error rate?

Hint: errors usually
change high-count k-mer
into low-count k-mer

5 10 15 20 25
0

20
00

40
00

60
00

80
00

10
00
0

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free

*

Error correction

~ 9.6K distinct k-mers
occur just once

32 distinct k-mers
occur just once

k-mers with errors usually occur fewer times than error-free k-mers

5 10 15 20 25

0
20
00

40
00

60
00

80
00

10
00
0

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free
0.1% error

*

Error correction
Idea: errors tend to turn frequent k-mers to infrequent k-mers, so
corrections should do the reverse
Say we have a collection of reads where each distinct 8-mer occurs an
average of ~10 times, and we have the following read:

GCGTATTACGCGTCTGGCCT
GCGTATTA:&8
&CGTATTAC:&8
&>ATTACG:&9
&&&TATTACGC:&9
&&&&ATTACGCG:&9
&&&&&TTACGCGT:&12
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

Read:

8-mers:

times each 8-mer
occurs in the dataset.
“k-mer count pro!le”

All 8-mer counts are around
the average, suggesting read
is error-free

(20 nt)

*

Error correction

Suppose there’s an error

GCGTACTACGCGTCTGGCCT
GCGTACTA:&1
&CGTACTAC:&3
&>ACTACG:&1
&&&TACTACGC:&1
&&&&ACTACGCG:&2
&&&&&CTACGCGT:&1
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

Read:

Around average

Below average
k-mer count pro!le has
corresponding stretch of
below-average counts

*

Error correction
k-mer count pro!les when errors are in di"erent parts of the read:

GCGTACTACGCGTCTGGCCT
GCGTACTA:&1
&CGTACTAC:&3
&>ACTACG:&1
&&&TACTACGC:&1
&&&&ACTACGCG:&2
&&&&&CTACGCGT:&1
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

GCGTATTACACGTCTGGCCT
GCGTATTA:&8
&CGTATTAC:&8
&>ATTACA:&1
&&&TATTACAC:&1
&&&&ATTACACG:&1
&&&&&TTACACGT:&1
&&&&&&TACACGTC:&1
&&&&&&&ACACGTCT:&2
&&&&&&&&CACGTCTG:&1
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

GCGTATTACGCGTCTGGTCT
GCGTATTA:&8
&CGTATTAC:&8
&>ATTACG:&9
&&&TATTACGC:&9
&&&&ATTACGCG:&9
&&&&&TTACGCGT:&12
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGT:&1
&&&&&&&&&&>CTGGTC:&2
&&&&&&&&&&&&TCTGGTCT:&1

Index

y

Index

y

Index

y

*

Error correction

k-mer count pro!le indicates where errors are

2 4 6 8 10 12

2
4

6
8

10

k-mer position

co
un
t

These probably
overlap an error

*

Error correction

Simple algorithm: given a count threshold t:

For each read:
For each k-mer:

If k-mer count < t:
Examine k-mer’s neighbors within certain Hamming/edit distance.
If neighbor has count ≥ t, replace old k-mer with neighbor.

5 10 15 20 25

0
20
00

40
00

60
00

80
00

10
00
0

k-mer count

di
st

in
ct

 k
-m

er
s

w
ith

 th
at

 c
ou

nt

Error-free
0.1% error

Pick a t that lies in the trough
(the dip) between the peaks

*

Error correction: results

Corrects 99.2% of the errors in the example 0.1% error dataset

Before After

0 50 100 150

0
10
00

20
00

30
00

40
00

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free
0.1% error

0 50 100 150

0
10
00

20
00

30
00

40
00

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free
0.1% error, corrected

From 194K k-mers occurring exactly once to just 355

*

Error correction: results

5 10 15

60
00
0

10
00
00

14
00
00

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

Error-free
1% error, corrected
1% error, uncorrected
G bound

For uncorrected reads, De Bruijn graph size is o! the chart

For corrected reads, De Bruijn graph size is near G bound

*

Error correction

For error correction to work well:

Average coverage should be high enough and k should be set
so we can distinguish infrequent from frequent k-mers

k-mer neighborhood we explore must be broad enough to !nd
frequent neighbors. Depends on error rate and k.

Data structure for storing k-mer counts should be substantially
smaller than the De Bruijn graph

Otherwise there’s no point doing error correction separately

Counts don’t have to be 100% accurate; just have to
distinguish frequent and infrequent

*

